Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant.

نویسندگان

  • Robert Zarnowski
  • Kendal G Cooper
  • Laura Schmitt Brunold
  • Jimmy Calaycay
  • Jon P Woods
چکیده

The intracellular fungal pathogen Histoplasma capsulatum (Hc) resides in mammalian macrophages and causes respiratory and systemic disease. Iron limitation is an important host antimicrobial defence, and iron acquisition is critical for microbial pathogenesis. Hc displays several iron acquisition mechanisms, including secreted glutathione-dependent ferric reductase activity (GSH-FeR). We purified this enzyme from culture supernatant and identified a novel extracellular iron reduction strategy involving gamma-glutamyltransferase (Ggt1) activity. The 320 kDa complex was composed of glycosylated protein subunits of about 50 and 37 kDa. The purified enzyme exhibited gamma-glutamyl transfer activity as well as iron reduction activity in the presence of glutathione. We cloned and manipulated expression of the encoding gene. Overexpression or RNAi silencing affected both GGT and GSH-FeR activities concurrently. Enzyme inhibition experiments showed that the activity is complex and involves two reactions. First, Ggt1 initiates enzymatic breakdown of GSH by cleavage of the gamma-glutamyl bond and release of cysteinylglycine. Second, the thiol group of the released dipeptide reduces ferric to ferrous iron. A combination of kinetic properties of both reactions resulted in efficient iron reduction over a broad pH range. Our findings provide novel insight into Hc iron acquisition strategies and reveal a unique aspect of Ggt1 function in this dimorphic mycopathogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum.

For the fungus Histoplasma capsulatum, and for other microbial pathogens, iron is an essential nutrient. Iron sequestration in response to infection is a demonstrated host defense mechanism; thus, iron acquisition may be considered an important pathogenic determinant. H. capsulatum is known to secrete Fe(III)-binding hydroxamate siderophores, which is one common microbial process for acquiring ...

متن کامل

Histoplasma Requires SID1, a Member of an Iron-Regulated Siderophore Gene Cluster, for Host Colonization

The macrophage is the primary host cell for the fungal pathogen Histoplasma capsulatum during mammalian infections, yet little is known about fungal genes required for intracellular replication in the host. Since the ability to scavenge iron from the host is important for the virulence of most pathogens, we investigated the role of iron acquisition in H. capsulatum pathogenesis. H. capsulatum a...

متن کامل

Secreted dipeptidyl peptidase IV activity in the dimorphic fungal pathogen Histoplasma capsulatum.

Dipeptidyl peptidase type IV (DppIV) enzymes are broadly distributed phylogenetically and display diverse functions, including intercellular signaling, immunomodulation, protein maturation and processing, metabolism, and nutrient acquisition. We identified a secreted proteolytic activity in Histoplasma capsulatum effective toward DppIV-specific substrates. In order to determine the gene(s) that...

متن کامل

Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species.

The pathogenic fungus Histoplasma capsulatum escapes innate immune defenses and colonizes host macrophages during infection. After the onset of adaptive immunity, the production of the antimicrobial effector nitric oxide (*NO) restricts H. capsulatum replication. However, H. capsulatum can establish persistent infections, indicating that it survives in the host despite exposure to reactive nitr...

متن کامل

Identification of coprogen B and its breakdown products from Histoplasma capsulatum.

Iron added to a chemically defined liquid medium suppressed hydroxamic acid production at 37 degrees C by yeast cells of Histoplasma capsulatum. Four hydroxamic acids, HA-I, HA-II, HA-III, and HA-IV, present in the low-iron fluid after the culture of H. capsulatum were isolated by extraction and cation-exchange chromatography through cellulose phosphate (0.35% formic acid). Visible spectra of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 70 2  شماره 

صفحات  -

تاریخ انتشار 2008